
四年级(下册)数学每单元知识点笔记
第一单元 四则运算一、加法的意义和各部分间的关系1.把两个数合并成一个数的运算,叫做加法。2.加法各部分的名称。相加的两个数叫做加数;加得的数叫做和。3.加法各部分间的关系。和=加数+加数加数=和-另一个加数二、减法的意义和各部分间的关系1.已知两个数的和与其中的一个加数,求另一个加数的运算,叫做减法。
2.减法各部分的名称。在减法中,已知的和叫做被减数,其中的一个加数叫做减数,求得的另-一个加数叫做差。3.减法各部分间的关系。差=被减数-减数减数=被减数-差被减数=减数+差4.减法是加法的逆运算。5.根据加、减法各部分间的关系可以进行加、减法的验算。三、乘法的意义和各部分间的关系1.求几个相同加数的和的简便运算,叫做乘法。2.乘法各部分间的名称。相乘的两个数叫做因数,乘得的数叫做积。3.乘法各部分间的关系。积=因数x因数因数=积÷另一个因数四、除法的意义和各部分间的关系1.已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
2.除法各部分的名称。在除法中,己知的积叫做被除数,已知的因数叫做除数,求出的未知因数叫做商。3.没有余数的除法各部分间的关系。商=被除数:除数除 数=被除数-商被除数=除数x商4.有余数的除法各部分间的关系。被除数=商x除数+余数商=(被除数余数)=除数除数=(被除数余数)-商5.余数-定比除数小。6.除法是乘法的逆运算。利用乘、除法的互逆关系来验算乘、除法算式。没有余数的除法算式:五、有关0的运算1.0在运算中的特点。(1)在加法中,一个数加上0,还得原数。(2)在减法中,一个数减去0,仍得原数;被减数等于减数,差是0。
(3)在乘法中,一个数和0相乘得0。(4)在除法中,0除以一个非0的数得0。2.0不能作除数。注意:0作除数无意义。例如:8÷0不可能得到商,因为找不到一个数同0相乘得到8。0÷0不可能得到一个确定的商,因为任何数同0相乘都得0。六、四则运算加、减、乘、除四种运算统称四则运算。加、减法称为第一级运算, 乘、除法称为第二级运算。七、运算顺序1.在没有括号的算式里,只有加、减法或者只有乘、除法,都要按从左往右的顺序依次运算:既有乘、除法又有加、减法,要先算乘、除法,后算加、减法。2.含有小括号的运算顺序:算式里含有小括号,要先算小括号里面的。3.一个算式里,既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。注意:括号的作用是改变运算顺序,要想改变运算顺序可以使用括号。八、租船问题解决租船问题时,尽量乘坐人均租金便宜的船,大小船搭配正好坐满,一般没有空余座位时最省钱。九、选择合适的购票方案根据票价的不同按不同方案计算出总钱数,比较得出哪种方案比较省钱。
第二单元 观察物体
一、从不同位置观察到物体的形状是不同的。判断从不同位置观察到的图形的方法:从哪一位置观察物体,就从哪一面数出小正方体的数量,并确定摆出的形状。从前面观察,可以知道这个物体是由几列、几层摆成的;从上面观察,可以知道这个物体是由几列、几排摆成的;从左、右面观察,可以知道这个物体是由几层、几排摆成的。从左面和右面观察同一个物体, 看到的形状不一 定相同。如:从前面、上面、左面观察下面的物体,分别是什么形状?
观察可知,这是由5个小正方体搭成的物体。从前面看有两层,第一层有3个小正方形,第二层正中间有一个小正方形,从上面看有前后两排,第一排有1个小正方形,第二排有3个正方形;从左面看有两列,第- 列有1个正方形,第二列有2个正方形,
第三单元 运算定律一、加法运算定律1.加法交换律两个数相加,交换加数的位置,和不变。用字母表示为a+b=b+a。2.加法结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。用字母表示为(a+b)+c=a+(b+c)。加法交换律和加法结合律同样适用于计算多个数连加。125+36+75+264=(125+75)+(36+264)=200+300=500有的算式中带有括号,先算括号里面的并不简便,可以根据加法结合律先把括号去掉,再根据数的特点运用加法交换律和加法结合律使计算变得简便。如:(452+36)+(48+564)=(452+48)+(36+564)=500+600=1100注意:在计算连加算式时,不要盲目地进行计算,首先要观察算式中的数,看看有没有能凑成整十、整百、整千的数,如果有,那么可以运用加法交换律或加法结合律进行计算,这样既简便又准确。二、减法的运算性质1.一个数连续减去两个数,等于减去这两个数的和。用字母表示为a-b-c=a-(b+c)。注意:根据数据的特点逆运用减法的性质也可以使计算变得简便。括号前面是减号,去掉括号后,括号里面的算式要改变运算符号。如:346-( 146+63)=346- 146-63=200-63=137减法性质的逆运用:一个数减去两个数的和相当于从被减数中连续减去这两个数。2.在连减运算中,任意交换两个减数的位置,差不变。用字母表示为a-b-c=a-c-b。3.在加减混合运算中,加数、减数可以带着数前面的运算符号一起交换位置再进行计算,其结果不变。用字母表示为a+b-c=a-c+b(a>c)三、乘法运算定律1.乘法交换律两个数相乘,交换两个因数的位置,积不变。用字母表示为axb=bxa。2.乘法结合律三个数相乘,先乘前两个数,或者先乘后两个数,积不变。用字母表示为(axb)xc=ax(bxc)。运用乘法交换律和乘法结合律可以使计算变得简便。如:25x17 ><4=17><(25 >4)=100x17=1700→这里运用了乘法交换律和乘法结合律,把乘积是整百的两个数结合。.在连乘算式中,如果某两个因数的积正好是整十、整百、整....的数,运.用乘法交换律或结合律先把这两个数相乘,能使计算简便。3.乘法分配律两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。用字母表示为(a+b)xc=axc+bxc。如:(125+12)x8=125 >8+12>8=1000+96=1096典型题目:(1)两个因数相乘,其中- -个因数是接近整十、整.....的数,可以先将其转化成整十、整百....的.数加(或减)一个数的形式,再运用乘法分配律进行简算。
99x24 302 x24=(300+2)×24 =(100-1)×24=300×24+2 ×24 =100×24-1×24=7200+48 =2400-24=7248 =237678 x36+32 x36-10x36
=(78+32- 10)x36=100×36=3600两个(或三个)乘法算式中都有一个相同的因数,可以将这个共同的因数提取出来,将另外的因数组合在一起算, 转化成形如axd+bxd+c xd=(a+b+c)xd的形式来简算。四、除法的运算性质1.一个数连续除以两个数,可以用这个数除以两个除数的积。用字母表示为a÷b÷c=a÷(bxc)(b、c 均不为0)。(1) 600÷25÷4 (2) 700÷14 =600 ÷(25÷4) =700÷(7×2) =600÷100 =100÷2 =6 =50注意:括号前面是除号,添上(或去掉)括号后,括号里面的算式要改变运算符号。两个数相除,如果除数分解成的因数恰好与被除数成倍数关系,那么逆运用除法的性质也可以使计算变得简便。2.在连除运算中,任意交换两个除数的位置,商不变。用字母表示为a÷b÷c=a÷c÷b(b、c均不为0)。
第四单元 小数的意义和性质一、小数的意义1.小数的意义:分母是10、100、 ..0..... 的分数可以用小数表示。2.小数的计数单位是十分之一、百分之一、千分之一 .....分别写作0.1、0.01、0.001.....3.小数的数位顺序表。
一个小数包括三部分:整数部分、小数点和小数部分。4.每相邻两个计数单位之间的进率都是10。二、小数的读法1.读小数时,先读整数部分,按照整数的读法来读。整数部分是0时,就读作“零”。2.小数点读作“点”。3.最后读小数部分,要依次读出小数部分每一位 上的数字。小数部分有几个0,就读出几个零。三、小数的写法1.写小数时,先写整数部分,按照整数的写法来写,如果整数部分是零,那么就直接写“0”。2.在个位的右下角点上小数点。3.最后写小数部分,要依次写出小数部分每一位上的数字。四、小数的性质1.小数的末尾添上“0”或去掉“0”",小数的大小不变。注意:只能是小数末尾的“0”,其他位置的“0”不可以随意删掉或添加。
2.运用小数的性质可以化简和改写小数。(1)化简小数就是不改变小数的大小,依据小数的性质,去掉小数末尾的0,使小数读写起来更简便。注意:只能去掉小数末尾的0,其他位置的0不能去掉,否则会改变小数的大小。(2)改写小数的方法:在不改变小数大小的前提下,根据小数的性质,在小数的末尾添上或去掉“0”即可。注意:把整数改写成小数时,首先在整数的右下角点上小数点,然后根据需要在小数点后添上相应个数的“0”。五、比较小数大小的方法1.比较整数部分,整数部分大的那个数就大。2.整数部分相同的,十分位上的数大的那个数就大。3.十分位上的数相同的,百分位上的数大的那个数就大,依此类推。
六、小数点的移动规律小数点向右(或左)移动一位、两位、三....小数就扩大(或缩小)到原数的10倍(或0.1)、100 倍(或0.01)、1000 倍(或0.001)....七、小数点的移动引起小数大小变化规律的应用把一个数扩大到它的10倍、100 倍、1000 倍.... .就是用这个数分别乘10、 100、......小数点就要相应地向右移动一位、两位、三位......把一个数缩小到它的0.1、0.01、0.001..........就是用这个数分别除以10、 100、.......小数点就要相应地向左移动一位、两位、三位.....八、小数与单位换算1.低级单位的单名数改写成高级单位的单名数的方法:用这个数除以两个单位间的进率,如果两个单位间的进率是10、100、1000...那么可以直接把小数点向左移动相应的位数。2.把复名数改写成用小数表示的高级单位的单名数的方法:复名数中高级单.位的数不变,作为小数的整数部分,把复名数中低级单位的数改写成高级单位的数,它的小数部分作为单名数的小数部分。3.高级单位的单名数改写成低级单位的单名数的方法:用这个数乘两个单位间的进率,如果两个单位间的进率是10、100、 ......那么可以直接把小数点向右移动相应的位数。4.把用小数表示的高级单位的单名数改写成含有低级单位的复名数的方法:小数的整数部分直接作为高级单位的数,小数的小数部分可以用乘进率或移动小数点的方法转化成低级单位的数。明确单位间的进率是进行单位间转化的关键。常用的单位名称及进率:
九、小数的近似数求小数的近似数可以用“四舍五入”法。精确到哪一位就看它的下 一位是大于5或等于5,还是小于5。如果精确位的下一-位大于5或等于5,就把精确位后面的数全部舍去,并向前一位进1。如果精确位的下一位小于5,就直接把精确位后面的数全部舍去。当保留整数时,表示精确到个位;当保留一位小数时, 表示精确到十分位;当保留两位小数时,表示精确到百分位。十、把不是整万或整亿的数改写成用“万”或“亿”作单位的数1.确定万位或亿位,然后在万位或亿位的右下角点上小数点。2.在小数的后面加上一个“万”字或“亿”字。改写后还可以根据要求保留小数位数。
第五单元 三角形一、三角形的特性1.三角形的定义。由3条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。
2.三角形的各部分的名称。
三角形有3条边,3个顶点,3个角。3.三角形的表示方法。为了表达方便,可以用字母A、B、C分别表示三角形的3个顶点,下面的三角形可以表示成三角形ABC。
4.三角形的高。定义:从三角形的一一个顶点到它的对边作一条 垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。(如图)画法:
注意:锐角三角形的3条高都在三角形的里面。钝角三角形有一条高在三角形的里面,2条高在三角形的外面。(如图)
直角三角形的两条直角边是互相垂直的,互为底和高。(如下图所示)
5.三角形的特性。三角形具有稳定性。6.两点间的距离。两点间所有连线中线段最短,这条线段的长度叫做两点间的距离。7.三角形3条边的关系。三角形任意两边之和大于第三边。二、三角形的分类1.用集合圈表示三角形的分类。
2.特殊三角形的特点。等腰三角形:相等的两条边叫做三角形的腰,两腰与底边的夹角叫做底角。等腰三角形的两腰相等,两个底角也相等。等边三角形:等边三角形也叫做正三角形。3条边都相等,3个角也相等,都是60°。直角三角形:直角三角形中相互垂直的两条边叫做直角边,直角所对的边叫做斜边,斜边大于任意一 条直角边。一个三角形中最少有2个锐角。等边三角形是特殊的等腰三角形,但等腰三角形不一-定 是等边三角形。
三、三角形的内角和1.三角形的内角和是180%。2.三角形内角和的应用:在一个三角形中,已知两个角的度数,可以根据“三角形的内角和是180°”求出第三个角的度数。
第六单元 小数的加法和减法一、小数加、减法的计算方法1.计算小数加、减法时,要注意小数点对齐,也就是相同数位要对齐。2.从低位算起,按整数加减法的计算方法进行计算,得数中的小数点要与竖式中的小数点对齐。3.得数的小数部分末尾有0,一般要把0去掉。注意:在笔算位数不同的小数减法时,可以根据小数的性质在小数的末尾添上0,使两个小数的位数相同后再减。二、小数加减混合运算小数加减混合运算的运算顺序与整数加减混合运算的运算顺序相同。1.没有括号的,要按从左往右的顺序计算。2.有括号的,先算括号里面的,再算括号外面的。三、小数加、减法的简便计算1.整数加法的运算定律在小数运算中同样适用。2.加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法的性质:a-b-c=a-(b+c)a-b-c=a-c-b括号前面如果是减号,去掉括号后,原括号里的运算符号要变号,即加号变减号,减号变加号。注意:小数加减混合运算中,要想交换数的位置, 一定要连同数前面的运算符号一起交换。
第七单元 图形的运动轴对称1.轴对称图形的意义:将图形沿--条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形,折痕所在的这条直线叫做它的对称轴。对称轴是一-条直线,不能称射线、线段为图形的对称轴。2.轴对称图形的基本性质:对应点到对称轴的距离相等。3.轴对称图形的特征:沿对称轴对折,对应点重合。4.补全一个轴对称图形的方法。(1)定点:确定已知图形的关键点,如图形的顶点、相交点、端点等。
(2)数格:数出关键点到对称轴的距离。(3)描点:在对称轴的另一侧描出关键点的对应点。(4)连线:按照已知图形的形状顺次连接各对应点,补全这个轴对称图形。如:画出轴对称图形的另一半。
注意:(1)轴对称图形中连接对应点的线段一定垂直于对称轴,并被对称轴平分(2)轴对称图形被对称轴分成的两部分,沿对称轴对折后能够完全重合。1.平移的意义:在平面内,将一个图形沿着某-一个方向移动一定的距离,这样的图形运动叫做平移。2.平移的特点:不改变物体的形状和大小,只改变物体的位置。3.平移的两个要素:方向和距离。4.确定方格中图形平移的方向和距离的方法。(1)根据箭头的指向能够确定平移的方向。(2)找出平移前后两个图形的一组对应点,对应点之间的距离就是图形平移的距离。5.平移后的图形的画法。(1)选点:在原图上选几个能决定图形形状和大小的点。(2)描点:将选定的几个点分别按要求平移,得到它们的对应点,描出各点。
(3)连点:根据原图的形状顺次连接各对应点,得到的图形就是原图形平移后的图形。6.运用平移知识解决面积、周长问题。利用平移知识把不规则的图形转化成规则的图形,就可以根据面积(或周长)公式求它的面积(或周长)。如:求图形A的周长和阴影部分B的面积。
第八单元 平均数与条形统计图一、平均数1.平均数的意义:一组数据的和除以这组数据的个数,所得的商叫做平均数。
2.平均数的应用:它既可以描述一组数据的总体情况,也可以作为不同组数据进行比较的一个标准。 尤其在两组数据个数不相等的情况下,用平均数能较好地反映一组数据的总体情况。3.求平均数的方法。(1)移多补少法:在总数不变的前提下,从多的数中拿出一-部分分给少的数,使它们变成相同的数,这个相同的数就是这几个数的平均数。(2)公式法:总数÷份数=平均数注意:解决平均数问题,只要紧紧抓住平均数的数量关系式,找出题中总数量和对应的总份数即可。不是几个数相加就除以几。4.解决平均数问题要灵活运用计算公式:总数量:总份数=平均数,平均数x总份数=总数量,总数量-平均数=总份数。二、复式条形统计图1.复式条形统计图的绘制方法与单式条形统计图基本相同,只是在每组数中有两个数据,需要用两种不同的直条来表示,同时要注明图例。2.看复式条形统计图时,可以运用横向、纵向、综合对比等不同的方法观察,从中获取尽可能多的信息,并且可以根据获取的信息提出问题并解决问题。3.横向复式条形统计图与纵向复式条形统计图只是形式上不同,其他都相同。当数据的种类不多,但每类数据又比较大时,用横向复式条形统计图比较方便。
第九单元 数学广角_鸡兔同笼
一、解答鸡兔同笼问题的方法1.列表法(1)逐一举例法。根据鸡与兔的总只数和总腿数,假设全是鸡,算出总腿数,然后逐一减少鸡的只数,增加兔的只数,依次算出总腿数,直到找出所求的答案为止。(2)取中列举的方法。可以直接假设鸡、兔各占一半,算出总腿数,根据与实际腿数的差值,确定列举的方向,这样可以大大缩小列举的范围。2.画图凑数法。可以用“〇”表示头,接着假设全都是腿数较少的动物,并在圆圈下面画上腿,最后把剩下的腿逐一添上, 就会很快发现它们各自的数量。3.假设法。假设笼中全是鸡或兔,然后算出腿的只数,并与实际相比较。假设全是鸡时,腿的只数比实际少,原因是把四只腿的兔子当成两只腿的鸡来算了;假设全是兔子,腿的只数比实际多,原因是把两只腿的鸡当成四只腿的兔子来算了。最后根据剩余或超出腿的数量,求出鸡、兔各自的数量。二、鸡兔同笼问题的变式题竞赛题类型的问题,注意做对一道题和做错-一道题相差分数是二者的分数和。
举报/反馈
最近更新教育教学
- 济南将碎片化经验总结提升,创新推出五项地方标准 让学前教育高质量发展有“标准”可
- 拓斯达:三季度实现扣非归母净利润同比增长27.39%,盈利能力持续提升
- “亚运薪火”与“宸星星火”同频共振 中学运动会迎来亚运冠军
- 多地清退编外人员,他们的“编外困局”:有人没资格报考所在岗位,有人因编外经历失去
- 民航局发布《活体动物航空运输工作指南》
- 合肥市淮河路第三小学教育集团映月校区:借数字应用于课堂 创智慧引领于教学
- 促进家校共育 巴蜀蓝湖郡小学开展家校共话成长系列活动
- 云南电网公司充分发挥公司律师四个作用助推企业高质量发展
- 汇聚邻里 共筑幸福丨合肥万科物业2023“朴里节”圆满落幕!
- 中拉跨越大洋高质量共建“一带一路”
- 广东报名自考有什么条件?
- 山东东营:文明宣讲进乡村 勤俭节约树新风
- 初中女生体测时突然心脏骤停……心肺复苏+AED“救了命”!
- 李刚,进京任职
- 1-9月海口港海关共受理“加工增值”试点扩区企业内销报关单404票 合计货值1.
- 重逢雁栖湖畔,国科大校友回家啦!
- 好水才能养好蟹
- 这种“鱼骨线”能变道吗?答案是……
- 今年上半年全球手机CIS传感器出货量20亿:同比下降14%
- 撑一支长蒿,向青草更青处漫溯
- 自考相对容易专业都有哪些?
- 远程“扶智”让优质教育资源“动”起来
- 黄喜灿:能被瓜迪奥拉称赞非常荣幸,新绰号可以向大家多宣传韩国
- AI赋能教育智变
- 同题观点