
十进制0.1是二进制的多少啊?
0-1=1
加法
有四种情况: 0+0=0
0+1=1
1+0=1
1+1=10
0 进位为1
【例1103】求 1011(2)+11(2) 的和
解:
1011+11
乘法
有四种情况: 0×0=0
1×0=0
0×1=0
1×1=1
减法
0-0=0,1-0=1,1-1=0,0-1=1。
除法
0÷1=0,1÷1=1。
拈加法
拈加法二进制是加减乘除外的一种特殊算法。
拈加法运算与进行加法类似,但不需要做进位。此算法在博弈论(Game Theory)中被广泛利用
计算机中的十进制小数转换二进制
计算机中的十进制小数用二进制通常是用乘二取整法来获得的。
比如0.65换算成二进制就是:
0.65 × 2 = 1.3 取1,留下0.3继续乘二取整
0.3 × 2 = 0.6 取0, 留下0.6继续乘二取整
0.6 × 2 = 1.2 取1,留下0.2继续乘二取整
0.2 × 2 = 0.4 取0, 留下0.4继续乘二取整
0.4 × 2 = 0.8 取0, 留下0.8继续乘二取整
0.8 × 2 = 1.6 取1, 留下0.6继续乘二取整
0.6 × 2 = 1.2 取1,留下0.2继续乘二取整
.......
一直循环,直到达到精度限制才停止(所以,计算机保存的小数一般会有误差,所以在编程中,要想比较两个小数是否相等,只能比较某个精度范围内是否相等。)。这时,十进制的0.65,用二进制就可以表示为:01010011。
还值得一提的是,在计算机中,除了十进制是有符号的外,其他如二进制、八进制、16进制都是无符号的。
在现实生活和记数器中,如果表示数的“器件”只有两种状态,如电灯的“亮”与“灭”,开关的“开”与“关”。一种状态表示数码0,另一种状态表示数码1,1加1应该等于2,因为没有数码2,只能向上一个数位进一,就是采用“满二进一”的原则,这和十进制是采用“满十进一”原则完全相同。
1+1=10,10+1=11,11+1=100,100+1=101,
101+1=110,110+1=111,111+1=1000,……,
可见二进制的10表示二,100表示四,1000表示八,10000表示十六,……。
二进制同样是“位值制”。同一个数码1,在不同数位上表示的数值是不同的。如11111,从右往左数,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。
所谓二进制,也就是计算机运算时用的一种算法。二进制只由一和零组成。
比方说吧,你上一年级时一定听说过“进位筒”(“数位筒”)吧!十进制是个位上满十根小棒就捆成一捆,放进十位筒,十位筒满十捆就捆成一大捆,放进百位筒……
二进制也是一样的道理,个位筒上满2根就向十位进一,十位上满两根就向百位进一,百位上满两根…… 二进制是世界上第一台计算机上用的算法,最古老的计算机里有一个个灯泡,当运算的时候,比如要表达“一”,第一个灯泡会亮起来。要表达“二”,则第一个灯泡熄灭,第二个灯泡就会亮起来。
二进制就是等于2时就要进位。
0=00000000
1=00000001
2=00000010
3=00000011
4=00000100
5=00000101
6=00000110
7=00000111
8=00001000
9=00001001
10=00001010
……
即是逢二进一,二进制广泛用于最基础的运算方式,计算机的运行计算基础就是基于二进制来运行。只是用二进制执行运算,用其他进制表现出来。
其实把二进制三位一组分开就是八进制, 四位一组就是十六进制
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现
最近更新影视资讯
- 韵府群玉
- 老年临终关怀护理集锦9篇
- 如何评价剧场版动画《和谐(harmony/ハーモニー)》原作:伊藤计划 ?
- 智人战胜尼人的决定性因素 是神灵崇拜与艺术品 在3万7千年前智人击败了远比自己强
- 沈阳参考消息(2017年1月11日)
- 密集架区密集架书库图书馆负一楼期刊阅览区中外文期刊图书馆一楼图书借阅区(A-H
- 费维光:脾胃病17方
- 土耳其身为伊斯兰国家,为什么允许“风俗产业”合法化?
- 高中教师教学反思
- 三观尽毁!90后公务员出轨50岁女上司,聊天言语暧昧,妻子怒举报
- 22应用心理学考研347 首师360有调剂院校吗?
- 铃木凉美女士,你仍期待同时收获怜爱与尊敬吗?
- 团建别墅 | 确认过眼神,是能疯一起的人!Boss,今年年会我们泡私家温
- 《归来》观后感
- 翻译伦理的重要性和译者荣辱观建设研究
- 高二语文期末考试测试题及答案
- 国医大师名单!在北京看中医该找谁,这下全知道!
- 这些年爱过的同人文(BG)
- 荷兰深陷风俗业?日本都要甘拜下风,为何能稳坐世界顶尖位置!
- 戴安娜25年前私密录像首次解密:自述性生活,全英国都被炸懵逼了
- 原创上官婉儿为什么必须死,她做的这件事太无耻,李隆基忍无可忍
- 「医药速读社」Paxlovid临床失败 礼来斥巨资引进Kv1.3抑制剂
- 她是韩国性感女神,靠出演“三级片”走红,今41岁韵味不减当年!
- 电影市场有望点燃 好莱坞大片排队上映
- 评荐《传染病(Contagion)》